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Abstract—While network bandwidth is steadily increasing,
it is doing so at a much slower rate than the corresponding
increase in CPU performance. This trend has widened the
gap between CPU and network speed. In this paper, we
investigate improvements to I/O performance by exploiting this
gap. We harness idle CPU resources to compress network data,
reducing the amount of data transferred over the network
and increasing effective network bandwidth. We created a
set of data compression services within the I/O Forwarding
Scalability Layer. These services transparently compress and
decompress data as it is transferred over the network. We
studied the effect of the data compression services on a variety
of data sets and conducted experiments on a high-performance
computing cluster.
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I. INTRODUCTION

Computational performance has historically outpaced the
development of network interconnects and topologies. As
core counts per compute node have increased, the amount
of network bandwidth available per compute node has risen
but not at a fast enough pace to keep up with the increasing
computational performance of the node. This gap is expected
to widen as we enter into the era of exascale computing with
supercomputers containing many hundreds of computational
cores per compute node. In this new era, interconnect
bandwidth between nodes and various file systems will be at
a premium. By trading CPU performance for a reduction in
data size, the effective network bandwidth can be increased.

Interconnect bandwidth typically drops as the distance
between nodes increases. For many supercomputers, the total
bandwidth between compute nodes is many times larger
than the bandwidth to and from external systems. These
external systems are often large, shared file systems. For
example, for both the IBM Blue Gene/P and the Cray
XT series supercomputers, only a limited number of nodes
(often called I/O nodes) have a direct connection to the
external network. This means that all I/O flows through
these nodes, creating a bottleneck in reaching the external
systems. Since there are often tens to hundreds times more
compute nodes than I/O nodes, it is clear that a very small
number of compute nodes can easily saturate the network
links going to the I/O nodes. As many scientific applications

show an I/O pattern biased towards writing (often caused by
checkpointing), compressing data before sending it to the
I/0 nodes reduces the load on the network. Even if the I/O
nodes need to decompress the data before sending it on the
external network, compression can still be advantageous as
many compression algorithms are asymmetric with respect
to throughput; decompression is often an order of magnitude
faster than compression, ensuring that decompressing data
using a limited number of I/O nodes does not become a
bottleneck.

IOFSL (I/0 Forwarding Scalability Layer), further de-
scribed in Section III-A, is a portable I/O forwarding imple-
mentation. I/O forwarding is used to forward I/O operations
from the compute nodes, through the I/O nodes, to the
external file system. Due to its presence on both the I/O
nodes and the compute nodes, IOFSL is superbly placed to
study the compression of I/O data. By adding compression to
the I/O forwarding layer, we can easily evaluate its effect on
the I/0 throughput without modifications to the application
or the external file system.

In this paper, we present our recent analysis of how
compressing I/O traffic can impact application I/O through-
put. In Section II, we present research related to our work.
Section III describes the data compression services and the
integration with IOFSL. In Section IV, we evaluate our
approach using a combination of scientific data sets and
synthetic data. Section V describes our conclusions and
future work.

II. RELATED WORK

Compression [1] has been explored in many scientific do-
mains. It has been widely used to minimize disk utilization,
reduce bandwidth consumption on networks, and reduce
energy consumption in hardware. It has found widespread
use in the multimedia domain where images and movies are
compressed to save disk space and network transmission
time [2], [3].

Compression has been used extensively in wireless net-
works, such as 3G networks, and for website optimizations
to reduce the end-to-end transmission time [4], [5], [6], [7],
[8], [9], [10]. In these cases, compression reduced transfer



latency and improved response times. Our work differs from
the above web-based compression studies. We study the
effects of compression in the I/O forwarding layer used
in high-performance computing applications. We investigate
the effects of data compression on network transmission
time as well as its effect on I/O completion time. We show
that compression improves network end-to-end transmission
time, network bandwidth, and consequently the file I/O
throughput.

There have been many studies on the effects of compres-
sion to minimize energy consumption [11], [12], [13], [14],
[15]. The work presented in these studies focuses on using
compression in hardware to reduce the energy consumption
of CPU caches and the network. We focus on software com-
pression in high-performance computing clusters to reduce
communication latency, improve network bandwidth, and
increase the performance of the I/O forwarding layer.

A recent study investigated the effects of compression
on power usage in MapReduce clusters [16]. This study
focused on increasing I/O performance in order to reduce
cluster power consumption. Our work focuses on improving
I/O performance to achieve faster time-to-science. Another
data compression study was recently performed using Blob-
Seer [17], a highly parallel distributed data management
service. This research differs from our work in that BlobSeer
is designed for use in Grid computing environments, while
our work is intended for use in high-performance computing
systems.

III. HPC DATA COMPRESSION SERVICES

While data compression methods can decrease the storage
footprint of scientific data, generic data compression services
for file I/O are not readily available. When these services are
available, they are directly integrated into applications [18],
[19], data management tools [20], [21], and data storage
services [22], [23], [24], [25]. Reintegration of these data
compression services into the I/O forwarding layer of the
HPC 1/O software stack provides the same services in a
more portable and transparent manner than through direct
integration into HPC software. In this section, we describe
I/O forwarding in cluster computing environments, char-
acterize the viable data compression methods for use by
HPC applications, and discuss how these data compression
methods integrate with I/O forwarding to provide portable
and transparent data compression services.

A. I/O Forwarding Overview

The goal of I/O forwarding is to bridge cluster compute
nodes with cluster storage systems. On some platforms, stor-
age devices cannot be accessed directly from the compute
nodes and I/O forwarding is required to enable such access.
I/O forwarding infrastructure can also optimize and reorga-
nize application I/O patterns since it has direct access to
all application I/O requests. The I/O Forwarding Scalability

Layer (IOFSL) [26], [27], [28] is an example I/O forwarding
infrastructure we have used to explore how to bridge the
physical storage constraints of HPC systems and optimize
application file I/O patterns.

IOFSL consists of two components: a client and a server.
When the client receives an I/O request from the appli-
cation, it does not execute it locally. Instead, it forwards
the operation to the server running on a remote, dedicated
node. The client integrates with several HPC mechanisms
that implement typical HPC file I/O interfaces. A ROMIO
driver for IOFSL translates MPI-IO requests into IOFSL
client requests. FUSE and sysio IOFSL clients provide a
POSIX I/O interface.

The IOFSL server receives and executes the I/O requests
forwarded by the clients. After receiving a request, the
server decodes it and manages the execution of the I/O
operation using a state machine. The state machine executes
and communicates with the client to retrieve any additional
data required by the I/O request and communicates the
results of the I/O operation to the client. The use of a state
machine allows for greater concurrency within the server
while reducing the number of active threads.

Since IOFSL acts as a transparent intermediary between
applications and file systems, it is an ideal place to provide
auxiliary data management services, such as data compres-
sion services. Identifying and characterizing the behavior
of data compression services across a sample of HPC data
sets is required to understand the costs and benefits of these
services.

B. Data Compression Services

We evaluated three data compression methods for use
in our data compression services. The algorithms used in
these methods place different emphasis on the compression
speed (time to compress data) and the compression ratio
(the reduction factor of the compressed data). The Lempel-
Ziv-Oberhumer (LZO) compression library is a portable and
lossless compression library that focuses on compression
speed rather than data compression ratios [29]. The bzip2
compression library also provides portable and lossless
compression capabilities and is well known for its compres-
sion ratio performance [30]. The popular zlib compression
library [31] provides lossless data compression based on
the DEFLATE compression algorithm [32]. We evaluated
zlib because its compression ratio and speed provide a good
balance between the extremes of LZO and bzip2.

We did not investigate floating point compression meth-
ods. While such compression methods may improve the
performance for some HPC application data sets, we lim-
ited our investigation to general purpose data compression
libraries so that we could demonstrate the viability of data
compression services across a breadth of data types.



C. Integrating Data Compression Services with IOFSL

We developed data compression services for IOFSL based
on the LZO, bzip2, and zlib compression libraries for
IOFSL. Applications using these services require no modi-
fications as the data compression services are transparent to
the end-user. IOFSL provides several scalable mechanisms
to optimize potentially expensive HPC file I/O operations.
These capabilities can help applications sustain acceptable
levels of file I/O performance when using the data compres-
sion services.

The data compression services are integrated into the
IOFSL client and server network streams. As clients and
servers issue I/O requests, the data for these requests are
passed to a stream-based network layer. This stream pack-
ages the data and transmits them when the stream buffer is
full or when it is explicitly flushed. These streams can be
stacked so that file I/O data passes through several layers
of streams before it is transmitted across the network. The
data compression services are implemented within a network
stream layer. Once the data is compressed, it is forwarded
to a lower-level network stream and is eventually transferred
across the network and decompressed by the receiver.

IV. DATA COMPRESSION SERVICES EVALUATION

We evaluated our data compression services within
IOFSL. In this section, we describe how IOFSL and the
data compression services were deployed in a cluster com-
puting environment, we describe the data sets used in our
evaluation, we outline the setup of our data compression ex-
periments, and we analyze the performance and effectiveness
of the data compression services.

A. Evaluation Platform and Deployment

We evaluated our data compression and I/O forwarding
tools on the Fusion cluster at Argonne National Laboratory.
Fusion is a 320 node Linux cluster with a peak performance
of 25.9 Tflops. Each Fusion compute node consists of two
quad-core, 2.53 GHz Intel Nehalem processors. Fusion has
two memory configurations for its compute nodes: 16 fat
nodes with 96 GB of RAM and 304 regular nodes with 36
GB of RAM. The compute nodes are connected through
two separate networks: a high-performance QDR Infiniband
network and a 1-Gbit Ethernet management network. Fusion
provides users with several storage services. GPFS and
PVES2 file systems are provided for cluster-wide, high-
performance file I/0. Each compute node also provides a
local scratch file system using an internal disk drive and a
shared memory RAM disk.

Typically, IOFSL executes on a dedicated cluster I/O node
that is responsible for handling all file I/O requests generated
by compute nodes. The Fusion cluster does not have I/O
nodes. Therefore, we allocated additional compute nodes
during our evaluation and reserved those nodes as I/O nodes.
These 1/0 nodes hosted the IOFSL server. The benchmarks

Name | Description | Format | Source

Zero | Null data binary /dev/zero

Text Nucleotide data text European Nucleotide Archive [33]
Bin Air / sea flux data | binary | NCAR Data Archive [34]

Comp | Tropospheric data | GRIB2 | NCAR Data Archive [35]

Rand | Random data binary | /dev/random

Table I: Data sets used for evaluation

used in our evaluations integrated the IOFSL client and
communicated directly with the IOFSL server.

B. Target Data Sets

The data sets used in our experiments are representative
of typical HPC data formats from a variety of scientific
domains. We chose a breadth of data sets for our eval-
uation to help illustrate how each compression method
performs for various types of scientific data. The data
sets used in our evaluation are described in Table 1. They
include data expected to compress very well (output from
/dev/zero), data expected to be incompressible (obtained
from /dev/random), ASCII text data, binary data, and
samples from several freely available scientific data sources.

Our initial evaluation explored how well each data set
compressed using the LZO, zlib, and bzip2 compression
libraries. In this evaluation, we measured the compression
ratio, the time to compress, and the time to decompress each
data set for each compression method. The results of this
evaluation are illustrated in Figure 1.

Figure la illustrates the storage or network resources
consumed by the compressed data. bzip2 achieves the best
compression ratio for most data sets while LZO exhibits the
worst. The ratio for the Text data set is close to that of the
Zero set (our best case compression ratio). Comp compresses
poorly; this data set is in the GRIB2 format and already
compressed with JPEG 2000.

Figures 1b and lc illustrate the cost of using these
algorithms. These figures highlight differences between each
compression method and between the compression and
decompression operations for each method. Note that the
decompression throughput is measured in the volume of
decompressed data processed per second, same as the com-
pression throughput. For most of the compression methods,
the decompression throughput is much greater than the
compression throughput (note the different scales on the y
axes). LZO achieves the highest throughput rates, confirming
its fast, near real-time compression capabilities. bzip2 on the
other hand is routinely the slowest compression method. zlib
strikes a better balance, achieving compression ratio close
to that of bzip2 while maintaining much higher throughput
rates.

C. Experimental Design

Our experiments evaluated how the IOFSL compression
services affected aggregate application I/O throughput. We
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Figure 1: Performance evaluation of the compression algo-
rithms used.

developed a synthetic benchmark to evaluate the compres-
sion services for multiple data sets and IOFSL client scaling
configurations. The benchmark operates on 128 MB chunks
of data from each data set. It executes in two phases. First, it
issues compressed read I/O requests. These requests require
the IOFSL server to compress the data and the IOFSL client
to decompress it. During the second phase, the benchmark
issues write I/O requests for the same chunk of data. This

requires the IOFSL client to compress the data and the server
to decompress it. For each phase, the benchmark reports the
aggregate throughput of the data for all processes based on
the size of the uncompressed data. This metric illustrates the
potential speedup from using the data compression services.

On the Fusion cluster, we used the shared memory RAM
disk (/dev/shm) to store the benchmark data. Using the RAM
disk in our evaluation limited file system noise and removed
the storage system as a bottleneck. In these experiments, a
single IOFSL server was deployed on a dedicated node. We
executed our synthetic benchmark (using the IOFSL client)
at scales ranging from 8 to 256 client processes with 8 clients
per compute node.

D. Analysis of Results

Figure 2 shows the observed transfer rate when reading
or writing each of the data sets described in Table I.
The solid and dashed lines indicate the respective read
and write speed when compression is disabled. Any result
showing a read speed higher than the solid line indicates that
compression increased I/O throughput. While we evaluated
each compression method with a wide range of client counts
(up to 256) on both Ethernet and Infiniband networks, due
to space constraints Figure 2 only shows the results for 128
clients using Ethernet.

It is clear that the results are highly dependent on the
compression algorithm. The first graph (top of Figure 2)
shows the results for the bzip2 algorithm. For the Zero data
set, performance is greatly improved for both reads and
writes. However, looking at the Text data set, read perfor-
mance drops to a third of the uncompressed case, while write
performance doubles. The reason for the different behavior
between these two data sets can be found in Figure 1.
While Zero data set can be decompressed with bzip2 at over
200 MB/s, the text data decompression speed is only a frac-
tion of this. Compressing data using the bzip2 algorithm is
even slower: around 50 MB/s for Zero, and less than 5 MB/s
for Text. The fact that bzip2 nevertheless manages to improve
write performance is explained by looking at the amount of
CPU time available. Since, for writing, compression takes
place on the client, an increasing number of clients means
more processing time is available for compression. However,
on the server, where decompression happens, the amount
of processing time remains fixed, regardless of the number
of clients being serviced. For both the Zero and Text data
sets, the forwarding server can decompress data fast enough
to show an improvement in write speed when comparing
to the uncompressed case. However, for reading, when the
server is responsible for compressing the data, only Zero
data set can be compressed fast enough. When compressing
text data, at a rate about ten times slower than that of Zero,
the available CPU time becomes a bottleneck, explaining the
drop in read performance. For the other data sets, bzip2’s
limited throughput is far too low to be usable.
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Figure 2: Performance on the Ethernet network with 128
clients, using: bzip2 (top), zlib (center), and LZO (bottom).

LZO (bottom graph of Figure 2), having a very high
compression and decompression throughput, delivers the
best performance, showing transfer speeds close to the
uncompressed case even for hard to compress data. The
small drop in read performance can be attributed to the rela-
tively minor overhead caused by the fast LZO compression
algorithm. Highly compressible data, such as the Zero or
Text data sets, show a speedup of a factor of 5 to 50 for
both reading and writing. For the Bin data set, throughput
almost doubles.

The zlib results (center graph of Figure 2) are quite similar
to those of LZO. Data sets that can be compressed show

an appreciable speedup, while hard to compress data shows
a larger—albeit still small—reduction in I/O throughput.
The increased overhead is directly related to the slower
compression and decompression throughput rates of zlib.

Figure 3 shows the I/O throughput our approach would
deliver if decompression overhead were negligible. This
would be the case if the decompression could be offloaded
to a dedicated processor. Assuming an overhead-free de-
compression is not unrealistic, given the fact that dedicated
accelerators capable of compressing and decompressing data
using zlib at a rate of multiple hundred megabytes per second
are already commercially available.

Avoiding decompression overhead can also be realized
by simply not decompressing the data, instead storing the
compressed representation on the file system. Overhead-free
compression can be obtained by using a sufficiently large
number of clients, as—for writes—the total compression
throughput scales linearly with the number of clients (and
thus processors). For checkpointing, storing the compressed
representation would be a reasonable thing to do as check-
points are always written but rarely read.

The data shown in Figure 3 is obtained by taking the
uncompressed I/O throughput (writes), divided by the com-
pression ratio. Therefore, the throughput of hard to compress
data, such as the Comp data set which has a compression
ratio close to 1, is hardly affected.

The Text data set however, which has a very small com-
pression ratio, shows dramatic increases in write throughput,
ranging from about 1.5 gigabytes per second for LZO to
almost 5 gigabytes per second for bzip2. The throughput
for the Bin data set, which compresses less well, still almost
doubles to 600 megabytes per second.

Since for all data sets, throughput is at least that of
the uncompressed case, compression can always be safely
enabled in this scenario.
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Figure 3: Projected write performance over Infiniband with
no compression overhead.

Figure 4 presents a scalability study of the data compres-
sion service for different client counts ranging from 8 to 256,
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with two compression methods (zlib and bzip2), and both
Ethernet and Infiniband. The 7ext data set is being used.
For any compression method to be useful, its throughput
should exceed that of the plain transfer without compression
(denoted in the figure as no Comp). This is especially hard
when reading (left graph), since, as discussed earlier, the I/O
forwarding server becomes a bottleneck due to compression
overhead. zlib manages to beat the odds when running over
the Ethernet network, but not over Infiniband, which has an
order of magnitude greater bandwidth. bzip2, due to higher
compression overhead, succeeds with neither. The situation
is different when writing (right graph), as increasing client
parallelism can help hide the cost of compression overhead;
we are also helped by the fact that the raw writing per-
formance drops above 64 clients, especially with Infiniband
(we are investigating the cause of this). Nevertheless, when
writing, zlib compression is advantageous for all client
counts tested when using Ethernet, and for counts exceeding
32 when using Infiniband. Even the high cost of bzip2 can
be offset, at least on Ethernet, with client counts of 64 and
higher.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the feasibility of data compres-
sion and decompression while performing I/O. We analyzed
common compression algorithms and studied their effect
on the overall I/O performance. To evaluate compression
algorithm performance on I/O, we selected scientific data
obtained from multiple fields for testing. For certain types of
scientific data, we observed significant bandwidth improve-
ments. Our work shows that the benefits of compressing data
prior to transmission are highly dependent on the data being
transferred.

We are pursuing several areas of future work. Instead
of decompressing data before storing it on disk, we are
investigating storing compressed data, thus avoiding decom-
pression overhead until read time. As many scientific appli-
cations exhibit write-heavy I/O patterns, this optimization

could have a significant effect on the total execution time.

We are also investigating an adaptive compression ap-
proach, in which the best compression algorithm is selected
automatically. In cases where compression does not offer
any benefits, data compression is temporarily disabled.

In Section IV-D, we studied the performance assuming
a zero-overhead compression and decompression algorithm.
While not exactly cost-free, dedicated compression acceler-
ators, or coprocessors such as GPUs, have the potential to
reduce the compression overhead to that of a simple memory
copy. If the data compression and decompression time can
be reduced, the overhead associated with trying to compress
incompressible data can be avoided, improving the applica-
bility of our approach. In future work, we will investigate
compression offloading mechanisms to reduce the cost of the
compression methods and validate the projections presented
in Section IV-D

The compression algorithms studied in this paper are
general purpose. As our work is situated in the I/O layer,
these conditions cannot be guaranteed without modifying
other layers of the software stack. While there is a wide
range of special purpose compression methods, we did not
include them in our study due to the stricter requirements
these algorithms place on the input data. In future, we
plan to relax our requirements and analyze floating point
compression algorithms as part of our data compression
services.
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